
LA-UR-16-23295
Approved for public release; distribution is unlimited.

Title: Dynamic System Simulation of the KRUSTY Experiment

Author(s): Klein, Steven Karl
Kimpland, Robert Herbert

Intended for: Report

Issued: 2016-05-09



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



1 | P a g e  
 

Dynamic System Simulation of the KRUSTY Experiment 

Steven K. Klein and Robert H. Kimpland 
Advanced Nuclear Technology Group (NEN-2) 

Los Alamos National Laboratory 

Purpose 
The proposed KRUSTY experiment is a demonstration of a reactor operating at power. The planned 
experimental configuration includes a highly enriched uranium (HEU) reflected core, cooled by multiple 
heat pipes leading to Stirling engines for primary heat rejection. Operating power is expected to be 
approximately four (4) to five (5) kilowatts with a core temperature above 1,000 K. No data is available 
on any historical reactor employing HEU metal that operated over the temperature range required for 
the KRUSTY experiment. Further, no reactor has operated with heat pipes as the primary cooling 
mechanism. Historic power reactors have employed either natural or forced convection so data on their 
operation is not directly applicable to the KRUSTY experiment. 

In the absence of historical data, planning for the KRUSTY experiment must rely on modeling to estimate 
system performance across the entire set of operating conditions. However, the absence of this data 
suggests that the model itself cannot a priori be considered to accurately predict performance. Hence, 
initial models cannot appeal to data on historic reactors for validation; models will of necessity appeal to 
fundamental physics of the various subsystems comprising the configuration supplemented with any 
data available on the operation of these subsystems.  

Three major subsystems may be recognized: (1) a nuclear element consisting of the HEU core, reflector, 
and shielding; (2) the heat pipes that will transfer heat from the core; (3) Stirling engines that will reject 
the heat transferred from the core by the heat pipes.  

Experiments are planned by NASA to address the thermal characteristics of the heat pipes and the 
Stirling engines. Data arising from these experiments is expected to provide information that will assist 
in model refinement for these two subsystems. Critical experiments conducted as a prelude to operating 
the fully configured KRUSTY reactor at power would provide nuclear data needed to achieve the level of 
understanding necessary for the nuclear subsystem.  

The primary purpose of the system model once developed and refined by data from these component 
experiments, will be used to plan the KRUSTY experiment. This planning will include expected behavior 
of the reactor from start-up, through various transient conditions where cooling begins to become 
present and effective, and finally establishment of steady-state. In addition, the model can provide 
indicators of anticipated off-normal events and appropriate operator response to those conditions. This 
information can be used to develop specific experiment operating procedures and aids to guide the 
operators in conduct of the experiment. 



2 | P a g e  
 

Introduction 
As noted above, a physics model of the KRUSTY experiment has been developed. This model may be 
characterized as a dynamic system simulation (DSS) of the KRUSTY Experiment. The simulation model 
consists of a time-dependent “transient” model, which may be used to study both the steady-state and 
transient behavior of the system. The simulation model combines the point reactor kinetics model, 
which tracks the neutron behavior of the reactor, with a thermal-hydraulic model, which tracks the flow 
of heat in the reactor system. The system model includes the reactor core, sodium heat pipes, 
condenser plate, and Stirling engines. In addition, the corresponding frequency-dependent transfer 
functions of the simulation model have been generated to facilitate a linear stability analysis. Transfer 
functions for a one region fuel model and a multi-radial-region core, which tracks dynamic thermal 
profile of the core are both presented.  

Any system component that directly contributes to reactivity feedback (i.e. possessing a reactivity 
feedback coefficient) or that significantly affects the temperature of such reactivity contributors needs 
to be included in the system model for completeness. The reactor neutron reflector is an example of the 
former, while the condenser plate, Stirling engines, and possibly the vacuum vessel are examples of the 
latter. At this point, the significance of these components is unclear. However, for completeness simple 
component models have been developed. 

Point Reactor Kinetics Model 
To track the neutronic behavior of the reactor the point reactor kinetics model is used. This model, in 
normalized form, is given by 

𝑑𝑑𝑃𝑃𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑

=
𝛽𝛽
𝛬𝛬 �

(𝑅𝑅 − 1)𝑃𝑃𝑓𝑓𝑓𝑓 + �𝐹𝐹𝑖𝑖
𝑖𝑖

𝐷𝐷𝑖𝑖� 

and 

𝑑𝑑𝐷𝐷𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝑖𝑖�𝑃𝑃𝑓𝑓𝑓𝑓 − 𝐷𝐷𝑖𝑖� 

The total fission power deposited into the reactor core is given by 

𝑃𝑃𝑓𝑓 = 𝑃𝑃𝑓𝑓𝑓𝑓𝑃𝑃𝑓𝑓𝑓𝑓 

Where 

𝑃𝑃𝑓𝑓𝑓𝑓 =  Initial reactor power 

The reactivity model for the reactor with a single reactivity feedback mechanism (represented by the ∝𝑇𝑇 
coefficient) due to fuel temperature, is given by 

𝑅𝑅 = 𝑅𝑅𝑓𝑓 +∝𝑇𝑇 ∆𝑇𝑇𝑓𝑓 
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Reactor Core Model 
The reactor core, which consists of the highly enriched uranium (HEU) fuel rings, is described by a one-
dimensional lumped parameter model in the radial direction. For N fuel lumps, the radial temperature 
of the fuel is given by 

 
𝑑𝑑𝑇𝑇𝑓𝑓,𝑖𝑖

𝑑𝑑𝑑𝑑
=

1
𝑀𝑀𝑓𝑓,𝑖𝑖𝐶𝐶𝑝𝑝𝑓𝑓

�𝑃𝑃𝑓𝑓,𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑓𝑓,𝑖𝑖 − 𝑄𝑄𝑓𝑓𝑜𝑜𝑜𝑜,𝑖𝑖�, 𝑖𝑖 = 1,2, … ,𝑁𝑁 

Where 

𝑇𝑇𝑓𝑓,𝑖𝑖 = fuel temperature in ith lump 
𝑀𝑀𝑓𝑓,𝑖𝑖 = fuel mass in ith lump 
𝐶𝐶𝑝𝑝𝑓𝑓 = Specific heat of fuel 
𝑃𝑃𝑓𝑓,𝑖𝑖 = fission energy deposited in ith lump 

 The flow of heat from one lump to another is given by simple conduction as 
 

𝑄𝑄𝑖𝑖𝑓𝑓,𝑖𝑖,𝑓𝑓𝑜𝑜𝑜𝑜,𝑖𝑖 = −𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓,𝑖𝑖,𝑓𝑓𝑜𝑜𝑜𝑜,𝑖𝑖
𝑑𝑑𝑇𝑇𝑓𝑓,𝑖𝑖

𝑑𝑑𝑑𝑑
 

Where 

𝑘𝑘𝑓𝑓 = thermal conductivity of the fuel 
𝐴𝐴𝑖𝑖𝑓𝑓,𝑖𝑖,𝑓𝑓𝑜𝑜𝑜𝑜,𝑖𝑖 = heat transfer areas (in and out) of ith lump 
 
The boundary conditions for the reactor core reflect the flow of heat across the innermost and 
outermost fuel lumps, given by 
 
Core Boundary 
 

𝑄𝑄𝑖𝑖𝑓𝑓,1 = 0 
 

𝑄𝑄𝑓𝑓𝑜𝑜𝑜𝑜,𝑁𝑁 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 + 𝑄𝑄𝑟𝑟𝑒𝑒𝑟𝑟 = ℎ𝑒𝑒𝐴𝐴_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑇𝑇𝑓𝑓,𝑁𝑁 − 𝑇𝑇𝑠𝑠� +
𝜎𝜎𝐴𝐴𝑅𝑅�𝑇𝑇𝑓𝑓,𝑁𝑁

4 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑠𝑠4�
1
𝜀𝜀𝑓𝑓

+ 1
𝜀𝜀𝑒𝑒𝑒𝑒𝑠𝑠

+ 1
 

Where 

ℎ𝑒𝑒 = heat pipe evaporator heat transfer coefficient 
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 = heat pipe evaporator heat transfer area 
𝑇𝑇𝑠𝑠 = Sodium vapor temperature 
𝜎𝜎 = Stefan-Boltzman constant 
𝐴𝐴𝑅𝑅 = radial surface area of core 
𝑇𝑇𝑒𝑒𝑒𝑒𝑠𝑠 = heat shield/vacuum vessel temperature 
𝜀𝜀𝑓𝑓 = emissivity of fuel 
𝜀𝜀𝑒𝑒𝑒𝑒𝑠𝑠 = emissivity of heat shield/vacuum vessel 
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Heat Pipes 
Physical heat pipes are generally constructed of composite walls of different materials. In this case the 
actual temperature of the innermost region of the heat pipe is governed by heat conduction from the 
inner fuel surface through each wall material. Conduction through curved surfaces is generally described 
by the expression 

𝑄𝑄 = 𝑘𝑘𝐴𝐴𝑚𝑚∆𝑇𝑇 

Where 

Am=log mean area of the curved surfaces: 𝐴𝐴𝑚𝑚 = 𝐴𝐴𝑜𝑜−𝐴𝐴𝑖𝑖
𝐿𝐿𝑓𝑓�𝐴𝐴𝑜𝑜𝐴𝐴𝑖𝑖

�
 

k=overall heat transfer coefficient through the, j, composite regions with thickness tj and individual heat 

transfer coefficient kj: 
1
𝑘𝑘

= ∑ 𝑜𝑜 𝑗𝑗
𝑘𝑘𝑗𝑗𝑗𝑗   

At present, the heat flow from thermal radiation is neglected due to insufficient details on the 
experiment design; however, a preliminary treatment is presented later in this paper. 

The system model for the sodium heat pipes consists of a single global sodium heat pipe. In the form of 
a single lump, this global heat pipe has the geometric characteristics of the sum of all the actual heat 
pipes. Heat transfer from the global heat pipe to the condenser plate is given by 

 
𝑄𝑄𝑐𝑐𝑓𝑓𝑓𝑓 = ℎ𝑐𝑐𝐴𝐴𝑐𝑐𝑓𝑓𝑓𝑓(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑐𝑐) 

Where 

ℎ𝑐𝑐 = heat pipe condenser heat transfer coefficient 
𝐴𝐴𝑐𝑐𝑓𝑓𝑓𝑓 = heat pipe condenser heat transfer area 
𝑇𝑇𝑐𝑐 = condenser plate temperature 
 
The saturation temperature of the Sodium vapor as a function of vapor pressure is given by 

 

𝑇𝑇𝑠𝑠 =
2𝐶𝐶3

(−𝐶𝐶2 + (𝐶𝐶2𝐶𝐶2 + 4𝐶𝐶1𝐶𝐶3 − 4𝐶𝐶3ln (𝑃𝑃))0.5) 

 
C1, C2, and C3 are geometric correction factors for surface heat flux and the boiling limit. These factors 
depend on the particular heat pipe geometry and fluid. For a cylindrical heat pipe with Na working fluid 
they may take the form: 

 

𝐶𝐶1 =  −
𝑑𝑑𝑤𝑤𝑖𝑖𝑐𝑐𝑘𝑘

𝑑𝑑𝑓𝑓𝑙𝑙𝑙𝑙 �1 − 𝑑𝑑𝑤𝑤𝑖𝑖𝑐𝑐𝑘𝑘
𝑑𝑑𝑓𝑓

�
;   𝐶𝐶2 =

𝑑𝑑𝑓𝑓
𝑑𝑑𝑖𝑖

;   𝐶𝐶3 =
0.5
𝑑𝑑𝑓𝑓𝑒𝑒

 

 
Where 



5 | P a g e  
 

twick =wick thickness 
ro = outer radius of the working region of the heat pipe 
ri = inner radius 
rne = radius of nucleation sites in microns. 

The Sodium vapor pressure is given by 
 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑅𝑅𝑔𝑔𝑇𝑇𝑠𝑠
𝑉𝑉

� 

Where 

𝑑𝑑 = mass of Sodium vapor 
𝑅𝑅𝑔𝑔 = Sodium vapor gas constant 
𝑉𝑉 = volume of Sodium vapor 
 
The Sodium vapor mass flow rate is given by 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 − 𝑄𝑄𝑐𝑐𝑓𝑓𝑓𝑓

ℎ𝑓𝑓𝑔𝑔
� 

Where 

ℎ𝑓𝑓𝑔𝑔 = Sodium latent heat of vaporization 

Heat Pipe Heat Transfer Coefficients 

For the heat pipes, heat transfer coefficients are modeled as simple thermal resistances based on the 
thickness of the Sodium liquid layer. These resistances are given by 

 

ℎ𝑐𝑐𝐴𝐴𝑐𝑐𝑓𝑓𝑓𝑓 =
2𝜋𝜋𝑙𝑙𝑐𝑐𝑘𝑘𝑙𝑙

ln 𝑑𝑑𝑓𝑓𝑑𝑑𝑖𝑖
 

And 

ℎ𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝 =
2𝜋𝜋𝑙𝑙𝑒𝑒𝑘𝑘𝑙𝑙

ln 𝑑𝑑𝑓𝑓𝑑𝑑𝑖𝑖
 

Where 

𝑙𝑙𝑐𝑐 = length of the condenser 
𝑙𝑙𝑒𝑒 = length of the evaporator 
𝑘𝑘𝑙𝑙 = thermal conductivity of Sodium liquid 
𝑑𝑑𝑓𝑓 = Sodium liquid outer radius 
𝑑𝑑𝑖𝑖 = Sodium liquid inner radius 
 
The heat transfer coefficient between the condenser plate and the Stirling engine will probably take the 
form of a convective heat transfer coefficient. The hydraulic diameter of the engine is given by 
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𝑑𝑑 =
4𝑉𝑉ℎ𝑒𝑒
𝐴𝐴𝑤𝑤

 

Where 

𝑉𝑉ℎ𝑒𝑒 = volume of engine’s heat exchanger 
𝐴𝐴𝑤𝑤 = wetted area of heat exchanger 
 
The Reynold’s number for the engine’s heat exchanger working fluid is given by 
 

𝑅𝑅𝑒𝑒 =
𝜌𝜌𝜌𝜌𝑑𝑑
𝜇𝜇

 

Where 

𝜌𝜌 = working fluid density 
𝜌𝜌 = working fluid bulk velocity 
𝜇𝜇 = working fluid dynamic viscosity 
 
The corresponding Nusselt number for this situation would be given by 
 

𝑁𝑁𝜌𝜌 =
ℎ𝑓𝑓𝑑𝑑
𝑘𝑘

 

Where 

𝑘𝑘 = thermal conductivity of the working fluid 
 
Given the geometry of the engine’s heat exchanger and the speed of the engine (frequency), the above 
parameters would be calculated assuming quasi-steady flow conditions. Generally, the engine’s heat 
transfer coefficient would be calculated using a semi-empirical correlation that gives the Nusselt number 
as a function of the working fluid’s Reynold’s and Prandtl numbers. 

Example of Model Results 
Consider a notional annular core composed of HEU and 8% Molybdenum (U-8Mo). The heat pipes are 
assumed to be eight in number and cylindrical with a composite wall consisting of Molybdenum in 
contact with the HEU core and inner layers of Haynes 230 stainless steel and Sodium. An MCNP model 
was developed to obtain nuclear parameters such as the mean-neutron-generation-time, prompt 
neutron fraction, core averaged temperature coefficient of reactivity, and flux distribution by radial 
region.  

Due to the uncertainties in actual geometries and equipment parameters described above presentation 
of actual dimensions used is suppressed; hence, overall general operational characteristics are reported. 

Figure 1 presents model representation of the first 1,000 seconds of a $1.00 reactivity insertion at a rate 
of $0.1/sec while Figure 2 is a detail of the first 100 seconds of the event. In these figures the core 
dynamics typical of a reactivity insertion into an HEU core can be seen. Fission Power rises sharply with 
the insertion and is quenched by the advent of heat removal. The various temperature traces are of fuel 
regions (T1, T5, T10; inner to outer) and the heat pipe Sodium vapor temperature, Ts. The close coupling 
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of thermal behavior in the core and heat pipes can be seen. Quasi-steady-state is reached by the end of 
the model run. 

 

Figure 1 $1.00 Reactivity Insertion   Figure 2 $1.00 Insertion Detail 

Figure 3 presents the results of a $3.00 reactivity insertion. In this case heat removal starts prior to full 
reactivity insertion so system response exhibits more features; however, once full reactivity insertion 
occurs steady-state quickly ensues. This response can be seen in Figure 4 where an additional $0.50 step 
reactivity insertion occurs once steady-state is reached form the initial case. Here, again, a new steady-
state operating position is reached. 

 

Figure 3 $3.00 Reactivity Insertion   Figure 4 $0.50 Step Insertion 

Core & Heat Pipe Temperatures 

Fission Power 

$0.50 insertion 
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As can be seen from Figure 4 the DSS model is capable of estimating response to dynamic events at any 
point in the system timeline. Examples of typical events of interest are shown in Figures 5 and 6. 

 

Figure 5 $3.00 Loss of Single Heat Pipe  Figure 6 Saturation Temperature Oscillation 

As noted previously, actual values are suppressed due to stated uncertainties; however, the general 
characteristics of system dynamics are typical of an HEU core with heat removal.  

Linear Stability Model 
The time-dependent model presented above was linearized and transformed into the frequency domain 
with the use of Laplace transforms. To facilitate the development of closed loop and open loop transfer 
functions, both a single and a multi-region core model were developed.  

One region fuel model 
The one region fuel model is described as follows 
 

𝑑𝑑𝑇𝑇𝑓𝑓
𝑑𝑑𝑑𝑑

=
1

𝑀𝑀𝑓𝑓𝐶𝐶𝑝𝑝𝑓𝑓
�𝑃𝑃𝑓𝑓 − ℎ𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑠𝑠)� 

Where 

𝑀𝑀𝑓𝑓 = total fuel mass 
𝑃𝑃𝑓𝑓 = total fission power deposited in the fuel 
 
This one region model leads to the following set of characteristic time constants 

𝑔𝑔1 = ℎ𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑅𝑅𝑔𝑔
ℎ𝑓𝑓𝑔𝑔𝑉𝑉

 ; 𝑔𝑔2 = ℎ𝑐𝑐𝐴𝐴𝑐𝑐𝑜𝑜𝑐𝑐𝑅𝑅𝑔𝑔
ℎ𝑓𝑓𝑔𝑔𝑉𝑉

 ; 𝑔𝑔3 = 1
𝑀𝑀𝑓𝑓𝐶𝐶𝑒𝑒𝑓𝑓

 ; 𝑔𝑔4 = ℎ𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑀𝑀𝑓𝑓𝐶𝐶𝑒𝑒𝑓𝑓

 

𝑊𝑊 = −𝑐𝑐2 + (𝑐𝑐22 + 4𝑐𝑐1𝑐𝑐3 − 4𝑐𝑐3ln (𝑃𝑃𝑓𝑓))0.5 ; 𝑈𝑈 = 𝑐𝑐22 + 4𝑐𝑐1𝑐𝑐3 − 4𝑐𝑐3ln (𝑃𝑃𝑓𝑓) ; 𝑌𝑌 = 4𝑐𝑐32

𝑃𝑃𝑜𝑜𝑊𝑊2𝑈𝑈0.5 

The one region fuel temperature transfer function is given by 

Heat Pipe Fails 
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𝑇𝑇�𝑓𝑓 =
𝑔𝑔3𝑃𝑃�𝑓𝑓

⎣
⎢
⎢
⎢
⎡
𝑠𝑠 + 𝑔𝑔4 −

𝑇𝑇𝑠𝑠𝑓𝑓𝑌𝑌𝑔𝑔1𝑔𝑔4

𝑠𝑠 �1−
𝑌𝑌�𝑔𝑔1𝑇𝑇𝑓𝑓𝑓𝑓 − 2𝑔𝑔1𝑇𝑇𝑠𝑠𝑓𝑓 − 2𝑔𝑔2𝑇𝑇𝑠𝑠𝑓𝑓 + 𝑔𝑔2𝑇𝑇𝑐𝑐�

𝑠𝑠 �
⎦
⎥
⎥
⎥
⎤
 

 
The typical forward transfer function based on the point reactor kinetics model is given by 
 

𝐺𝐺1 = �
𝑃𝑃�𝑓𝑓
𝑅𝑅�
� =

𝑃𝑃𝑓𝑓𝑓𝑓

�𝛬𝛬𝛽𝛽 𝑠𝑠 + ∑ 𝐹𝐹𝑘𝑘𝑠𝑠
𝑠𝑠 + 𝜆𝜆𝑘𝑘

𝑚𝑚
𝑘𝑘=1 �

 

Where 

𝑃𝑃𝑓𝑓𝑓𝑓 = steady-state power 
𝐹𝐹𝑘𝑘 = delayed neutron precursor fraction 
𝜆𝜆𝑘𝑘 = delayed neutron precursor time constant 
𝛬𝛬
𝛽𝛽

= inverse rossi-alpha value 

 
For a single reactivity feedback mechanism of fuel temperature change, the feedback transfer function is 
given by 

𝐻𝐻 = �
𝑅𝑅�

𝑃𝑃�𝑓𝑓
� =

∝𝑇𝑇 𝑔𝑔3

⎣
⎢
⎢
⎢
⎡
𝑠𝑠 + 𝑔𝑔4 −

𝑇𝑇𝑠𝑠𝑓𝑓𝑌𝑌𝑔𝑔1𝑔𝑔4

𝑠𝑠 �1 −
𝑌𝑌�𝑔𝑔1𝑇𝑇𝑓𝑓𝑓𝑓 − 2𝑔𝑔1𝑇𝑇𝑠𝑠𝑓𝑓 − 2𝑔𝑔2𝑇𝑇𝑠𝑠𝑓𝑓 + 𝑔𝑔2𝑇𝑇𝑐𝑐�

𝑠𝑠 �
⎦
⎥
⎥
⎥
⎤
 

 
Where 
 
∝𝑇𝑇= |∝𝑇𝑇| = fuel temperature reactivity feedback coefficient 
 
The closed loop transfer function is given by 
 

𝐺𝐺𝑐𝑐𝑙𝑙 =
𝐺𝐺1

1 + 𝐺𝐺1𝐻𝐻
 

 
The open loop transfer function is given by 
 

𝐺𝐺𝑓𝑓𝑙𝑙 = 𝐺𝐺1𝐻𝐻 
 

With these derivations traditional graphical representations may be developed including Nyquist Plot 
(Figure 7), Nichols Plot (Figure 8), Bode Amplitude and Frequency Plots (Figures 10 and 11). Internal 
functions in Mathematica were used to generate these plots. 
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         Figure 7 Single Region Core Nyquist Plot Figure 8 Single Region Core Nichols Plot 

Both the Nyquist and Nichols plots show a phase stability margin of approximately -100°. 

  

Figure 9 Single Region Core Bode Amplitude Plot       Figure 10 Single Region Core Bode Frequency Plot 

Bode plots exhibit no discontinuities or other anomalies along with some resonance regions. 

Multi-region Core Model 
The multi-region core model is given by 
 

𝑑𝑑𝑇𝑇𝑓𝑓,𝑖𝑖

𝑑𝑑𝑑𝑑
=

1
𝑀𝑀𝑓𝑓,𝑖𝑖𝐶𝐶𝑝𝑝𝑓𝑓

�𝑃𝑃𝑓𝑓,𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑓𝑓,𝑖𝑖 − 𝑄𝑄𝑓𝑓𝑜𝑜𝑜𝑜,𝑖𝑖�, 𝑖𝑖 = 1,2, … ,𝑁𝑁 

 

Where the heat flows from one fuel lump to the next is given by 

 
𝑄𝑄𝑖𝑖𝑓𝑓,𝑖𝑖 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓,𝑖𝑖(𝑇𝑇𝑓𝑓,𝑖𝑖−1 − 𝑇𝑇𝑓𝑓,𝑖𝑖)/𝑑𝑑𝑑𝑑 

and 
 

𝑄𝑄𝑓𝑓𝑜𝑜𝑜𝑜,𝑖𝑖 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜,𝑖𝑖(𝑇𝑇𝑓𝑓,𝑖𝑖 − 𝑇𝑇𝑓𝑓,𝑖𝑖+1)/𝑑𝑑𝑑𝑑 
Where 
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𝑑𝑑𝑑𝑑 = radial thickness of a fuel lump 
 
The fission energy deposited into each lump is given by 
 

𝑃𝑃𝑓𝑓,𝑖𝑖 = 𝐹𝐹𝑅𝑅𝐴𝐴𝑖𝑖𝑃𝑃𝑓𝑓  
Where 
 
𝐹𝐹𝑅𝑅𝐴𝐴𝑖𝑖 = fraction of total fission energy deposited into ith region 

The following set of system time constants characterize the multi-region model transfer functions for a 
ten region core model. 

𝑔𝑔1 = ℎ𝑒𝑒𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜10𝑅𝑅𝑔𝑔
ℎ𝑓𝑓𝑔𝑔𝑉𝑉

 ; 𝑔𝑔2 = ℎ𝑐𝑐𝐴𝐴𝑐𝑐𝑜𝑜𝑐𝑐𝑅𝑅𝑔𝑔
ℎ𝑓𝑓𝑔𝑔𝑉𝑉

 

 
𝑔𝑔101 = 𝐹𝐹𝑅𝑅𝐴𝐴10/𝑀𝑀𝑓𝑓10/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔102 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓10/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓10/𝐶𝐶𝑝𝑝𝑓𝑓 

 
𝑔𝑔103 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓10/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓10/𝐶𝐶𝑝𝑝𝑓𝑓 + ℎ𝑒𝑒𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜10/𝑀𝑀𝑓𝑓10/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔104 = ℎ𝑒𝑒𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜10/𝑀𝑀𝑓𝑓10/𝐶𝐶𝑝𝑝𝑓𝑓 

 

𝑊𝑊 = −𝑐𝑐2 + (𝑐𝑐22 + 4𝑐𝑐1𝑐𝑐3 − 4𝑐𝑐3ln (𝑃𝑃𝑓𝑓))0.5 ; 𝑈𝑈 = 𝑐𝑐22 + 4𝑐𝑐1𝑐𝑐3 − 4𝑐𝑐3ln (𝑃𝑃𝑓𝑓) ; 𝑌𝑌 = 4𝑐𝑐32

𝑃𝑃𝑜𝑜𝑊𝑊2𝑈𝑈0.5 

𝑔𝑔105 =
𝑇𝑇𝑠𝑠𝑓𝑓𝑌𝑌𝑔𝑔1

𝑠𝑠 �1 −
𝑌𝑌�𝑔𝑔1𝑇𝑇𝑓𝑓10𝑓𝑓 − 2𝑔𝑔1𝑇𝑇𝑠𝑠𝑓𝑓 − 2𝑔𝑔2𝑇𝑇𝑠𝑠𝑓𝑓 + 𝑔𝑔2𝑇𝑇𝑐𝑐�

𝑠𝑠 �
 

 
𝑔𝑔91 = 𝐹𝐹𝑅𝑅𝐴𝐴9/𝑀𝑀𝑓𝑓9/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔92 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓9/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓9/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔93 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓9/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓9/𝐶𝐶𝑝𝑝𝑓𝑓 + 𝑔𝑔92 

 
𝑔𝑔84 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜8/𝑀𝑀𝑓𝑓8/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔71 = 𝐹𝐹𝑅𝑅𝐴𝐴7/𝑀𝑀𝑓𝑓7/𝐶𝐶𝑝𝑝𝑓𝑓 

 
𝑔𝑔72 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓7/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓7/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔73 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓7/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓7/𝐶𝐶𝑝𝑝𝑓𝑓 + 𝑔𝑔72 

 
𝑔𝑔74 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜7/𝑀𝑀𝑓𝑓7/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔61 = 𝐹𝐹𝑅𝑅𝐴𝐴6/𝑀𝑀𝑓𝑓6/𝐶𝐶𝑝𝑝𝑓𝑓  

 
𝑔𝑔62 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓6/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓6/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔63 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓6/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓6/𝐶𝐶𝑝𝑝𝑓𝑓 + 𝑔𝑔62 

 
𝑔𝑔64 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜6/𝑀𝑀𝑓𝑓6/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔51 = 𝐹𝐹𝑅𝑅𝐴𝐴5/𝑀𝑀𝑓𝑓5/𝐶𝐶𝑝𝑝𝑓𝑓 

 
𝑔𝑔52 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓5/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓5/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔53 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓5/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓5/𝐶𝐶𝑝𝑝𝑓𝑓 + 𝑔𝑔52 

 
𝑔𝑔54 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜5/𝑀𝑀𝑓𝑓5/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔41 = 𝐹𝐹𝑅𝑅𝐴𝐴4/𝑀𝑀𝑓𝑓4/𝐶𝐶𝑝𝑝𝑓𝑓 

 
𝑔𝑔42 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓4/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓4/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔43 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓4/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓4/𝐶𝐶𝑝𝑝𝑓𝑓 + 𝑔𝑔42 

 
𝑔𝑔44 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜4/𝑀𝑀𝑓𝑓4/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔31 = 𝐹𝐹𝑅𝑅𝐴𝐴3/𝑀𝑀𝑓𝑓3/𝐶𝐶𝑝𝑝𝑓𝑓 

 
𝑔𝑔32 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓3/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓3/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔33 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓3/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓3/𝐶𝐶𝑝𝑝𝑓𝑓 + 𝑔𝑔32 
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𝑔𝑔34 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜3/𝑀𝑀𝑓𝑓3/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔21 = 𝐹𝐹𝑅𝑅𝐴𝐴2/𝑀𝑀𝑓𝑓2/𝐶𝐶𝑝𝑝𝑓𝑓 
 

𝑔𝑔22 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓2/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓2/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔23 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑖𝑖𝑓𝑓2/𝑑𝑑𝑑𝑑/𝑀𝑀𝑓𝑓2/𝐶𝐶𝑝𝑝𝑓𝑓 + 𝑔𝑔22 
 

𝑔𝑔24 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜2/𝑀𝑀𝑓𝑓2/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔11 = 𝐹𝐹𝑅𝑅𝐴𝐴1/𝑀𝑀𝑓𝑓1/𝐶𝐶𝑝𝑝𝑓𝑓 ; 𝑔𝑔14 = 𝑘𝑘𝑓𝑓𝐴𝐴𝑓𝑓𝑜𝑜𝑜𝑜1/𝑀𝑀𝑓𝑓1/𝐶𝐶𝑝𝑝𝑓𝑓 
 
The following algebraic expressions involve the various gij values just defined 

𝐴𝐴9 =
𝑔𝑔91+

𝑔𝑔94𝑔𝑔101
𝑠𝑠+𝑔𝑔103−𝑔𝑔104𝑔𝑔105

𝑠𝑠+𝑔𝑔93−
𝑔𝑔94𝑔𝑔102

𝑠𝑠+𝑔𝑔103−𝑔𝑔104𝑔𝑔105

  ; 𝐵𝐵9 = 𝑔𝑔92
𝑠𝑠+𝑔𝑔93−

𝑔𝑔94𝑔𝑔102
𝑠𝑠+𝑔𝑔103−𝑔𝑔104𝑔𝑔105

 

 
𝐴𝐴8 = 𝑔𝑔81+𝑔𝑔84𝐴𝐴9

𝑠𝑠+𝑔𝑔83−𝑔𝑔84𝐵𝐵9
 ; 𝐵𝐵8 = 𝑔𝑔82

𝑠𝑠+𝑔𝑔83−𝑔𝑔84𝐵𝐵9
 

 
𝐴𝐴7 = 𝑔𝑔71+𝑔𝑔74𝐴𝐴8

𝑠𝑠+𝑔𝑔73−𝑔𝑔74𝐵𝐵8
 ; 𝐵𝐵7 = 𝑔𝑔72

𝑠𝑠+𝑔𝑔73−𝑔𝑔74𝐵𝐵8
 

 
𝐴𝐴6 = 𝑔𝑔61+𝑔𝑔64𝐴𝐴7

𝑠𝑠+𝑔𝑔63−𝑔𝑔64𝐵𝐵7
 ; 𝐵𝐵6 = 𝑔𝑔62

𝑠𝑠+𝑔𝑔63−𝑔𝑔64𝐵𝐵7
  

 
𝐴𝐴5 = 𝑔𝑔51+𝑔𝑔54𝐴𝐴6

𝑠𝑠+𝑔𝑔53−𝑔𝑔54𝐵𝐵6
 ; 𝐵𝐵5 = 𝑔𝑔52

𝑠𝑠+𝑔𝑔53−𝑔𝑔54𝐵𝐵6
 

 
𝐴𝐴4 = 𝑔𝑔41+𝑔𝑔44𝐴𝐴5

𝑠𝑠+𝑔𝑔43−𝑔𝑔44𝐵𝐵5
 ; 𝐵𝐵4 = 𝑔𝑔42

𝑠𝑠+𝑔𝑔43−𝑔𝑔44𝐵𝐵5
 

 
𝐴𝐴3 = 𝑔𝑔31+𝑔𝑔34𝐴𝐴4

𝑠𝑠+𝑔𝑔33−𝑔𝑔34𝐵𝐵4
 ; 𝐵𝐵3 = 𝑔𝑔32

𝑠𝑠+𝑔𝑔33−𝑔𝑔34𝐵𝐵4
 

 
𝐴𝐴2 = 𝑔𝑔21+𝑔𝑔24𝐴𝐴3

𝑠𝑠+𝑔𝑔23−𝑔𝑔24𝐵𝐵3
 ; 𝐵𝐵2 = 𝑔𝑔22

𝑠𝑠+𝑔𝑔23−𝑔𝑔24𝐵𝐵3
 

 

𝐴𝐴1 =
𝑔𝑔11 + 𝑔𝑔14𝐴𝐴2

𝑠𝑠 + 𝑔𝑔14 − 𝑔𝑔14𝐵𝐵2
 

 
A final set of algebraic expressions are accumulations of the Ai, and Bj values 

 
𝐶𝐶4 = �𝐴𝐴4 + 𝐵𝐵4�𝐴𝐴3 + 𝐵𝐵3(𝐴𝐴2 + 𝐵𝐵2𝐴𝐴1)�� ; 𝐶𝐶6 = �𝐴𝐴6 + 𝐵𝐵6(𝐴𝐴5 + 𝐵𝐵5𝐶𝐶4)� ; 𝐶𝐶8 = �𝐴𝐴8 + 𝐵𝐵8(𝐴𝐴7 + 𝐵𝐵7𝐶𝐶6)� 

These expressions are used in preparing the multi-region fuel temperature transfer functions 
 

𝑇𝑇�𝑓𝑓1 = 𝐴𝐴1𝑃𝑃�𝑓𝑓 ; 𝑇𝑇�𝑓𝑓2 = (𝐴𝐴2 + 𝐵𝐵2𝐴𝐴1)𝑃𝑃�𝑓𝑓 ; 𝑇𝑇�𝑓𝑓3 = (𝐴𝐴3 + 𝐵𝐵3(𝐴𝐴2 + 𝐵𝐵2𝐴𝐴1))𝑃𝑃�𝑓𝑓 ; 𝑇𝑇�𝑓𝑓4 = 𝐶𝐶4𝑃𝑃�𝑓𝑓 
 

𝑇𝑇�𝑓𝑓5 = (𝐴𝐴5 + 𝐵𝐵5𝐶𝐶4)𝑃𝑃�𝑓𝑓 ; 𝑇𝑇�𝑓𝑓6 = 𝐶𝐶6𝑃𝑃�𝑓𝑓 ; 𝑇𝑇�𝑓𝑓7 = (𝐴𝐴7 + 𝐵𝐵7𝐶𝐶6)𝑃𝑃�𝑓𝑓 ;  𝑇𝑇�𝑓𝑓8 = 𝐶𝐶8𝑃𝑃�𝑓𝑓 
 

𝑇𝑇�𝑓𝑓9 = (𝐴𝐴9 + 𝐵𝐵9𝐶𝐶8)𝑃𝑃�𝑓𝑓 ; 𝑇𝑇�𝑓𝑓10 = 𝑔𝑔101+𝑔𝑔102(𝐴𝐴9+𝐵𝐵9𝐶𝐶8)
𝑠𝑠+𝑔𝑔103−𝑔𝑔104𝑔𝑔105

𝑃𝑃�𝑓𝑓 

 

As for the single region treatment expressions for reactivity and average fuel temperature are required 
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The multi-region reactivity model is given by 
 

𝑅𝑅 = 𝑅𝑅𝑓𝑓 + 𝛼𝛼𝑇𝑇(𝑇𝑇𝑓𝑓𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑓𝑓𝑓𝑓) 

Where the average fuel temperature is given by 

𝑇𝑇𝑓𝑓𝑒𝑒𝑒𝑒 = �
𝑀𝑀𝑓𝑓𝑖𝑖𝑇𝑇𝑓𝑓𝑖𝑖
∑ 𝑀𝑀𝑓𝑓𝑖𝑖
𝑁𝑁
𝑖𝑖

𝑁𝑁

𝑖𝑖

 

Thus, the reactivity transfer function is given by 
 

𝑅𝑅� = 𝛼𝛼𝑇𝑇�
𝑀𝑀𝑓𝑓𝑖𝑖𝑇𝑇�𝑓𝑓𝑖𝑖
∑ 𝑀𝑀𝑓𝑓𝑖𝑖
𝑁𝑁
𝑖𝑖

𝑁𝑁

𝑖𝑖

 

The multi-region feedback transfer function is given by 
 

𝐻𝐻𝑚𝑚𝑟𝑟 = �
𝑅𝑅�

𝑃𝑃�𝑓𝑓
� = 𝛼𝛼𝑇𝑇�

𝑀𝑀𝑓𝑓𝑖𝑖
𝑇𝑇�𝑓𝑓𝑖𝑖
𝑃𝑃�𝑓𝑓

∑ 𝑀𝑀𝑓𝑓𝑖𝑖
𝑁𝑁
𝑖𝑖

𝑁𝑁

𝑖𝑖

 

Where 
 

∝𝑇𝑇= |∝𝑇𝑇| 
 
 
Again, the forward transfer function is given by 
 

𝐺𝐺1 = �
𝑃𝑃�𝑓𝑓
𝑅𝑅�
� =

𝑃𝑃𝑓𝑓𝑓𝑓

�𝛬𝛬𝛽𝛽 𝑠𝑠 + ∑ 𝐹𝐹𝑘𝑘𝑠𝑠
𝑠𝑠 + 𝜆𝜆𝑘𝑘

𝑚𝑚
𝑘𝑘=1 �

 

 
 
And the closed loop transfer function is 
 

𝐺𝐺𝑐𝑐𝑙𝑙 =
𝐺𝐺1

1 + 𝐺𝐺1𝐻𝐻𝑚𝑚𝑟𝑟
 

 
And the open loop transfer function by 
 

𝐺𝐺𝑓𝑓𝑙𝑙 = 𝐺𝐺1𝐻𝐻𝑚𝑚𝑟𝑟 
 

These expressions allow generation of linear stability plots. As was the case for the single region model 
internal functions in Mathematica were used to generate these plots presented in Figures 11 through 
14. 
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         Figure 11 Multi-Region Core Nyquist Plot Figure 12 Multi-Region Core Nichols Plot 

   

Figure 13 Multi-Region Core Bode Amplitude Plot       Figure 14 Multi-Region Core Bode Frequency Plot 

Comparison of Figures 8 through 10 with Figures 11 through 14 show nearly identical agreement in form 
with some frequency shift in the Bode plots. 

The other necessary Nyquist criterion is that there are no positive poles. Table 1 provides the full (non-
zero) poles of the open loop transfer function: 

Table 1 Poles of the single region core open loop transfer function 
         
(7,718.08) 

       
(1,126.55) 

       
(1,126.55) 

       
(1,126.55) 

       
(1,126.55) 

       
(1,126.55) 

       
(1,126.55) 

       
(1,126.55) 

       
(1,126.55) 

       
(1,126.55) 

         
(1,126.55) 

          
(2.8982) 

          
(1.0241) 

          
(0.4853) 

          
(0.4848) 

          
(0.4664) 

          
(0.3645) 

          
(0.3641) 

          
(0.3641) 

          
(0.3640) 

             
(0.3629) 

          
(0.3602) 

          
(0.3556) 

          
(0.3473) 

          
(0.3434) 

          
(0.3421) 

          
(0.3420) 

          
(0.3415) 

          
(0.3363) 

          
(0.3301) 

             
(0.3253) 

          
(0.3116) 

          
(0.3096) 

          
(0.3095) 

          
(0.3085) 

          
(0.3079) 

          
(0.2967) 
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(0.2785) 

          
(0.2753) 
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(0.2695) 

          
(0.2511) 

          
(0.2444) 

          
(0.2439) 

          
(0.2378) 

          
(0.2332) 

          
(0.2305) 

             
(0.2275) 

          
(0.2269) 

          
(0.2236) 

          
(0.2230) 
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(0.2027) 

          
(0.1991) 
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(0.1969) 

          
(0.1966) 

             
(0.1948) 
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(0.0143) 
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Examination of these plots and poles allow the following observations and conclusions:  

• Bethe Criteria – No infinite resonance in Bode Plots 
• Nyquist Criteria – Number of clockwise encirclements of 1- plus the number of right hand plane 

poles is zero (transfer function has no positive poles) 
• Nichols Criteria – One sheeted full Nichols plot of the transfer function does not intersect the point 

(-180, 0 db) 

The Nyquist and Nichols Criteria conclusions are necessary and sufficient to establish stability of the 
model in the linear approximation. The Bethe criterion is necessary for non-linear system stability. 

Expanded Model Components 
The reflector and condenser plate are additional components that contribute to the overall performance 
of the system. 

Reflector Model 
The radial reflector, which is located outside the vacuum vessel, may or may not have an associated 
cooling system. The reflector model presented below uses a once-through cooling system to cool the 
reflector. The radial reflector temperature is given by 

𝑑𝑑𝑇𝑇𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝑔𝑔1𝑅𝑅𝑃𝑃𝑓𝑓 − 𝑔𝑔2𝑅𝑅(𝑇𝑇𝑅𝑅 − 𝐶𝐶1) 

Where 

𝑔𝑔1𝑅𝑅 = 𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅
𝑀𝑀𝑅𝑅𝐶𝐶𝑒𝑒𝑅𝑅

; 𝑔𝑔2𝑅𝑅 = ℎ𝑅𝑅𝐴𝐴𝑟𝑟𝑒𝑒𝑓𝑓
𝑀𝑀𝑅𝑅𝐶𝐶𝑒𝑒𝑅𝑅

 

And 
 
𝐹𝐹𝑅𝑅𝐴𝐴𝑅𝑅 = scaling factor between core and reflector power 
𝑀𝑀𝑅𝑅 = reflector mass 
𝐶𝐶𝑝𝑝𝑅𝑅 = specific heat of reflector 
ℎ𝑅𝑅 = heat transfer coefficient between reflector and coolant 
𝐴𝐴𝑟𝑟𝑒𝑒𝑓𝑓 = reflector heat transfer area 
 
The average temperature of the coolant is given by 

𝑑𝑑𝐶𝐶1
𝑑𝑑𝑑𝑑

= 𝑔𝑔3𝑅𝑅(𝐶𝐶𝑖𝑖𝑓𝑓 − 𝐶𝐶1) + 𝑔𝑔4𝑅𝑅(𝑇𝑇𝑅𝑅 − 𝐶𝐶1) 

The output temperature of the coolant is given by 

𝑑𝑑𝐶𝐶2
𝑑𝑑𝑑𝑑

= 𝑔𝑔3𝑅𝑅(𝐶𝐶1 − 𝐶𝐶2) + 𝑔𝑔4𝑅𝑅(𝑇𝑇𝑅𝑅 − 𝐶𝐶1) 

Where 
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𝑔𝑔3𝑅𝑅 = 2𝑊𝑊𝐶𝐶
𝑀𝑀𝐶𝐶

; 𝑔𝑔4𝑅𝑅 = ℎ𝑅𝑅𝐴𝐴𝑟𝑟𝑒𝑒𝑓𝑓
𝑀𝑀𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶

 

and 

𝑊𝑊𝐶𝐶 = coolant mass flow rate 
𝑀𝑀𝐶𝐶 = coolant mass 
𝐶𝐶𝑝𝑝𝐶𝐶 = specific heat of coolant 
 
The transfer function for the reflector temperature is then given by 

𝑇𝑇�𝑅𝑅 =
𝑔𝑔1𝑅𝑅𝑃𝑃�𝑓𝑓

𝑠𝑠 + 𝑔𝑔2𝑅𝑅 −
𝑔𝑔2𝑅𝑅𝑔𝑔4𝑅𝑅

𝑠𝑠 + 𝑔𝑔3𝑅𝑅 + 𝑔𝑔4𝑅𝑅
 

Condenser Plate 
The condenser plate serves as the heat sink for the heat pipes and the heat source for the Stirling 
engines. The time-dependent condenser temperature model is given by 

𝑑𝑑𝑇𝑇𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑔𝑔1𝐸𝐸(𝑇𝑇𝑆𝑆 − 𝑇𝑇𝐶𝐶)− 𝑔𝑔2𝐸𝐸(𝑇𝑇𝐶𝐶 − 𝑇𝑇𝐸𝐸) 

Where 

𝑔𝑔1𝐸𝐸 = ℎ𝑐𝑐𝐴𝐴𝑐𝑐𝑜𝑜𝑐𝑐
𝑀𝑀𝑐𝑐𝑜𝑜𝑐𝑐𝐶𝐶𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐

; 𝑔𝑔2𝐸𝐸 = ℎ𝑐𝑐𝐴𝐴𝑐𝑐
𝑀𝑀𝑐𝑐𝑜𝑜𝑐𝑐𝐶𝐶𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐

 

And 

𝑀𝑀𝑐𝑐𝑓𝑓𝑓𝑓 = mass of condenser plate 
𝐶𝐶𝑝𝑝𝑐𝑐𝑓𝑓𝑓𝑓 = specific heat of condenser plate 
ℎ𝑓𝑓 = heat transfer coefficient between condenser plate and Stirling engines 
𝐴𝐴𝑓𝑓 = heat transfer area between condenser plate and stirling engines 
𝑇𝑇𝐸𝐸 = upper temperature of stirling engine 
 
The transfer function for the condenser plate temperature is then given by 
 

𝑇𝑇�𝐶𝐶 =
𝑔𝑔1𝐸𝐸𝑇𝑇�𝑆𝑆

𝑠𝑠 + 𝑔𝑔1𝐸𝐸 + 𝑔𝑔2𝐸𝐸
 

The time-dependent condenser plate temperature leads to the following modifications of the previously 
described linear stability model. 

𝑔𝑔3𝐸𝐸 =
𝑔𝑔2𝑇𝑇𝑠𝑠𝑓𝑓𝑔𝑔1𝐸𝐸

𝑠𝑠 + 𝑔𝑔1𝐸𝐸 + 𝑔𝑔2𝐸𝐸
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One region model  

𝑇𝑇�𝑓𝑓 =
𝑔𝑔3𝑃𝑃�𝑓𝑓

⎣
⎢
⎢
⎢
⎡
𝑠𝑠 + 𝑔𝑔4 −

𝑇𝑇𝑠𝑠𝑓𝑓𝑌𝑌𝑔𝑔1𝑔𝑔4

𝑠𝑠 �1−
𝑌𝑌�𝑔𝑔1𝑇𝑇𝑓𝑓𝑓𝑓 − 2𝑔𝑔1𝑇𝑇𝑠𝑠𝑓𝑓 − 2𝑔𝑔2𝑇𝑇𝑠𝑠𝑓𝑓 + 𝑔𝑔2𝑇𝑇𝑐𝑐𝑓𝑓 + 𝑔𝑔3𝐸𝐸�

𝑠𝑠 �
⎦
⎥
⎥
⎥
⎤
 

 

Multi-region model 
 

𝑔𝑔105 =
𝑇𝑇𝑠𝑠𝑓𝑓𝑌𝑌𝑔𝑔1

𝑠𝑠 �1−
𝑌𝑌�𝑔𝑔1𝑇𝑇𝑓𝑓10𝑓𝑓 − 2𝑔𝑔1𝑇𝑇𝑠𝑠𝑓𝑓 − 2𝑔𝑔2𝑇𝑇𝑠𝑠𝑓𝑓 + 𝑔𝑔2𝑇𝑇𝑐𝑐𝑓𝑓 + 𝑔𝑔3𝐸𝐸�

𝑠𝑠 �
 

Expanded Model Stability 
The transfer functions for reflector and condenser plate have been incorporated into both the one-
region and multi-region models discussed previously. The stability plots are shown below. Figures 15 
through 18 present those for the one region model. Figures 19 through 22 present those for the multi-
region model. 

  

                Figure 15 Single Region Extended Core Nyquist Plot                      Figure 16 Single Region Extended Core Nichols Plot 
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               Figure 17 Single Region Extended Core Bode Amplitude Plot        Figure 18 Single Region Extended Core Bode Frequency Plot 

  

                Figure 19 Multi-Region Extended Core Nyquist Plot                      Figure 20 Multi-Region Extended Core Nichols Plot 

  

               Figure 21 Multi-Region Extended Core Bode Amplitude Plot        Figure 22 Multi-Region Extended Core Bode Frequency Plot 

As in the previous cases, which did not include the reflector and condenser plate, the agreement 
between results for single region and multi-region cases can be seen. While the Nyquist and Nichols 
plots and suggest similar phase stability margins the Bode plots exhibit broader resonances in the 
extended core case. Table 2 provides the full (non-zero) poles of the open loop transfer function for the 
multi-region extended core: 
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Table 2 Poles of the multi region core open loop transfer function 
       (7,718.08)        (1,130.09)       (27.91)     (6.8327)     (2.8982)     (1.0241)     (0.4853)     (0.4848)     (0.4664)     (0.3633) 

          (0.3629)           (0.3629)     (0.3627)     (0.3613)     (0.3579)     (0.3520)     (0.3409)     (0.3401)     (0.3386)     (0.3385) 

          (0.3380)           (0.3318)     (0.3191)     (0.3178)     (0.3063)     (0.3043)     (0.3041)     (0.3030)     (0.2991)     (0.2902) 

          (0.2674)           (0.2670)     (0.2667)     (0.2665)     (0.2658)     (0.2637)     (0.2624)     (0.2448)     (0.2422)     (0.2361) 

          (0.2353)           (0.2284)     (0.2258)     (0.2232)     (0.2209)     (0.2173)     (0.2160)     (0.2050)     (0.1971)     (0.1964) 

          (0.1950)           (0.1948)     (0.1944)     (0.1942)     (0.1875)     (0.1819)     (0.1782)     (0.1755)     (0.1750)     (0.1749) 

          (0.1749)           (0.0682)     (0.0143)     (0.0107) -1.58E-05      

 
These results illustrate that when the reflector or the condenser plate are included in model and linear 
stability analysis performed the results are the same as in the previous case where these components 
are not included.  

Conclusions and Recommendations 
A dynamic system simulation (DSS) has been developed to describe the expected transient behavior of 
the KRUSTY power reactor experiment. The current model is characterized as a physics model in that it 
has been developed from fundamental principles and correlations of similar components from 
literature. The model shows typical behavior that is expected of a core of the KRUSTY configuration 
cooled by heat pipes and Stirling engines. The conclusion of unconditional stability in the linear 
approximation and compliance with the criterion of nonlinear stability may be considered to be 
generally true with the understanding that “stability” in this context implies that the system is not 
expected to exhibit an unbounded response to a bounded event.  

Uncertainties in the DSS have been described. These uncertainties arise from a lack of data on the major 
elements of the KRUSTY reactor including the nuclear, heat pipe, and Stirling engine subsystems. 
Experiments currently planned are expected to provide this data to allow the model to be refined to the 
point where it may be used with confidence to plan the KRUSTY experiment and provide operator the 
procedural information necessary to actually conduct the experiment.  
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